Q1. (30 points; 10, 10, 10 points) Solve the following recurrence relations, expressing them using $\Theta()$ notation.

a. f(n) = 10f(n-1) - 25f(n-2) for $n \ge 2$; f(0) = 3, f(1) = 17. $x^2 - 10x + 25 = 0$

r1 = r2 = 5 $f(n) = 5^{n}c1 + 5^{n}nc2$ $f(0) = 5^{n}c1 + 2^{n}nc2 = 3 = c_{1}$ $f(1) = 5^{n}c1 + 5^{n}nc2 = 17 = 5c_{1} + 5c_{2}$ c1 = 3, c2 = 2/5 $f(n) = 35^{n} + 5^{n}n = \theta(n5^{n})$

b. Solve the following recurrence relations using the Master theorem?

i.
$$f(n) = 4f\left(\frac{n}{16}\right) + \sqrt{n}$$
 for $n \ge 2$; $f(0) = 1$, $f(1) = 0$.

Using master theorem: a=4, b=16 and $n^{(\log_{16}4)}=n^{(1/2)}$ $g(n)=n^{(1/2)}=\Theta(n^{(1/2)})$. It follows that: $f(n)=\Theta(n^{(1/2)}\log n)$.

c.
$$f(n) = 2 f(n/2) + n^2$$
 for $n \ge 2$; $f(0) = 6$; $f(1) = 1$;

~

Using master theorem:

 $a=2, b=2 \text{ and } n^{(log_2^2)}=n$ $g(n)=n^2= \Omega(n^{1+1}).$

Regularity Condition:

 $2 g(n/2) = 2 (n/2)^2 = 0.5 n^2 \le c g(n) = c. n^2$, Obviously, choosing c = 0.5 < 1 the inequality holds for all $n \ge 1 = n_0$.

It follows that the conditions for the third case of the Master theorem is satisfied, and hence:

 $f(n) = \Theta(n^2).$

Q2. (15 points) Use Horner's rule to evaluate the following polynomial at x = -6. $p(x) = 5x^9 + 29x^8 + 4x^7 + 65x^6 + 31x^5 - 40x^3 - 24x^2 + 8x + 40$ Note: A final answer without using the algorithm is worth zero points.

p = 5 p = 5(-6) + 29 = -1 p = -1(-6) + 4 = 10 p = 10(-6) + 65 = 5 p = 5(-6) + 31 = 1 p = 1(-6) + 0 = -6 p = -6(-6) - 40 = -4 p = -4(-6) - 24 = 0 p = 0(-6) + 8 = 8p = 8(-6) + 40 = -8

Q2. (20 points)

-

a. (10 points) Find the solution to the following recurrence relation in terms of Big Θ () notation.

$$f(n) = 4f\left(\frac{n}{2}\right) + n^2 \log n$$
 $f(1) = 2$

Using the master theorem is not an option as the relationship between n^2 and $n^2 \log n$ does not fall in any of the three cases. Hence, we resort to expansion:

$$f(n) = 4f\left(\frac{n}{2}\right) + n^{2} \log n$$

$$= 4\left(4f\left(\frac{n}{2^{2}}\right) + \frac{n^{2}}{2^{2}} \log \frac{n}{2}\right) + n^{2} \log n$$

$$= 4^{2}f\left(\frac{n}{2^{2}}\right) + n^{2} \log \frac{n}{2} + n^{2} \log n$$

$$= 4^{2}\left(4f\left(\frac{n}{2^{3}}\right) + \frac{n^{2}}{2^{4}} \log \frac{n}{2^{2}}\right) + n^{2} \log \frac{n}{2} + n^{2} \log n$$

$$= 4^{3}f\left(\frac{n}{2^{3}}\right) + n^{2} \log \frac{n}{2^{2}} + n^{2} \log \frac{n}{2} + n^{2} \log n$$

$$= \frac{4^{3}f\left(\frac{n}{2^{k}}\right) + n^{2} \log \frac{n}{2^{k-1}} + n^{2} \log \frac{n}{2^{k-2}} + \dots + n^{2} \log n$$

$$= 4^{\log n}f(1) + n^{2} \log \frac{n}{2^{\log n-1}} + n^{2} \log \frac{n}{2^{\log n-2}} + \dots + n^{2} \log \frac{n}{2} + n^{2} \log n + 1$$

$$= 2n^{2} + n^{2} (\log 2 + \log 2^{2} + \dots + \log 2^{\log n})$$

$$= 2n^{2} + n^{2} \sum_{\substack{l=1\\log n\\log n}}^{\log n} \log 2^{l}$$

$$= 2n^{2} + n^{2} \sum_{\substack{l=1\\log n\\log n}}^{\log n} (\log n + 1))$$

$$= 0(n^{2} \log^{2} n)$$

$$f(1)$$

b. (10 points) Use the change of variable method to find the solution to the following recurrence relation in terms of Big Θ () notation.

$$T(n) = 4T\left(n^{\frac{2}{3}}\right) + \log^{2} n \qquad T(1) = T(2) = 3$$
Let $n = 2^{k}$, (i.e., $k = \log n$). Then,

$$T(2^{k}) = 4T(2^{k})^{\frac{2}{3}} + \log^{2} 2^{k}$$

$$= 4T\left(2^{\frac{2k}{3}}\right) + k^{2} \qquad t^{1}$$
Now, consider the change of domain $T(2^{k}) \leftrightarrow f(k)$:

$$f(k) = 4f\left(\frac{2k}{3}\right) + k^{2} \qquad t^{2}$$

$$= 4f\left(\frac{k}{3/2}\right) + k^{2} \qquad t^{2}$$
With $a = 4, b = \frac{3}{2}, k^{\log_{3} 4} \text{ and } g(k) = k^{2}, \qquad t^{1}$
We see that $g(k) = k^{2} = 0\left(k^{\log_{3} 4 - \epsilon}\right)$, with $\epsilon = 1$.

$$F(k) = \Theta\left(k^{\log_{3} 4}\right) + k^{2}$$
Hence, the first case of the master theorem holds, and therefore,

$$f(k) = \Theta\left(k^{\log_{3} 4}\right) + k^{2}$$
Changing back to n , we find that $T(n) = \Theta\left(\log^{\log_{3} 4} n\right) \qquad t^{2}$